
•t

/

LBL-12054

NATIONAL
RESOURCE

FOR COMPUTATION
IN CHEMISTRY

Presented ~t the Second Chemical Congress of the
North American Continent, Las Vegas, NV,
August 24!:-29, ... 1980

THE RELATIVE PERFORMANCES OF SEVERAL SCIENTIFIC
COMPUTERS FOR A LIQUID MOLECULAR DYNAMICS SIMULATION

D.M. Ceperley.

August 1980

TWO-WEEK lOAN COPY

This is a library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Diu is ion, Ext. 6782

LAWRENCE :B.ERKELEY lABORATORY
UNIVERSITY OF CALIFORNIA

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 andfor the National
Science Foundation under Interagency Agreement CHE-7721305

~-

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain conect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any wananty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-12054
The Relative Performances of Several
Scientific Computers for a Liquid
Molecular Dynamics Simulation

By

D. M. Ceperley
National Resource for Computation in Chemistry
Lawrence Berkeley Laboratory, University of California,
Berkeley, CA 94720

In the last decade, the computer modeling of matter by
simulations has become a very important area of theoretical
chemistry.(l) One goal of the simulations is to understand the
properties of macroscopic systems starting from the Coulomb
potential and Schroedinger equation. Although it is feasible
that simulation methods can treat the complete many-body quan
tum problem,(2Y most'simulations today assume a classical model
with some effective interparticle potential., There are two
common methods employed, Metropolis Monte Carlo (MC)(3) is an
effective algorithm used for calculating static prop~rties of
many-body systems. Molecular Dynamics (MD)(4) is the term
employed when Newton's equations of motion are solved to find
equilibrium and non-equilibrium, dynamic and static properties
of many-body systems. What all of these simulations methods
have in common and their limitation is a processor fast enough
to move hundreds of atoms, hundreds and thousands of times.
What I want to discuss in this short note, are some of the
computational characteristics of simulations and my experience
in using a standard simulation program on several scientific
computers.

While at the National Resource for Computation in Chem
istry, I have developed a general classical simulation program,
called, CLAMPS (for classical many particle simu1ator)(5) cap
able of performing Mr and MD sTmulations of arbitrary mTxtures
of single atoms. The potential energy of a configuration of N
atoms at positions R = {r1, ... , rN} and with chemical
species {a.l,···• aN} is assumed to be a pairwise sum of
spherically symmetric functions.

U = [rl>a·a·(lri-rjl)
i<j , J M

(1)

Where $o:B(r) is the interaction between two atoms of type a and
Band lriM means the minimum image distance consistent with
periodic boundary conditions. In addition, there can be

bonding potentials between certain pairs of atoms. If some of
the atoms are charged there is another term in the potential
energy arising from the interaction of a charge with the
charges outside the simulation box: the Ewald image
potential.(6) This can be conveniently written as

- U[= L Vkl Pkl 2
k

(2)

Where k is a vector in the reciprocal lattice of the simulation
cell, Pk is the Fourier transform of the charge density,

Pk = Lqi exp(ik· ri)
i

qi is the charge of particle i, and Vk is the Fourier
component of the long range potential.(6)

(3)

In simulations, computation of the potential energy and
forces takes the vast majority of the computer time. The other
operations, such as moving the particles, usually are much
quicker. Shown in Table I is the FORTRAN coding needed to
compute the pair sum in eq. (1). In a general purpose program
such as CLAMPS one cannot assume that the pairwise interactions
are simple enough to compute at each step, whereas, a table
lookup is equally efficient for all systems. In CLAMPS the
potentials and the derivative -r-1d¢/dr are computed on a
grid linear in r2 at the beginning of the program and
stored. Tables with the order of 104 entries usually give
sufficient accuracy for most problems without any interpolation
because of the stafistical nature of the computation.

The coding in Table I illustrates the central problem of
simulations. The number of pairs is N(N-1)/2. The number of
floating point operations (FLOPS) per pair is about 25,
assuming the branches are executed 50% of the time. Thus for
100 atoms (a minimal simulation) we will need 1.2 x 105 FLOPS
for a single time step. The number of memory and indexing
operations is similarly large. Typically one needs to execute
between 103 and 105 time steps. Thus the simulations are
limited by the number of floating point operations one can
afford.

For systems which can be modeled with particles interacting
with only short ranged forces (that is the potential can be
neglected beyond several neighbor shells), the number of
operations per time step will be proportional to the number of
particles times the average number of neighbors of a given
particle. For such models, simulations of 104 atoms are
possible today on available mainframe as well as
minicomputers. For many chemical systems, such as those
containing macromolecules, one would like to work with still
larger systems over many time steps. Even with today's
computers, most chemical systems cannot be simulated without

2

Table I

C LOOP OVER ALL PAIRS OF ATOMS I, J
DO 1 1=1, NATOMS-1
DO 2 J=I+l, NATOMS

C CALCULATE PERIODIC DISTANCES
R2=0.0
DO 3 L=l, NDIM
DX(L)=X(I,L)-X (J,L)

C ELL AND EL2 ARE THE BOX AND HALF THE BOX LENGTHS
IF (DX(L).GT.EL2(L)) DX(L)=DX(L)-ELL(L)
IF (DX(L).LT.-EL2{L)) DX(L)=DX{L)+ELL (L)

3 R2=R2+DX{ L)**2
C IT AND JT ARE THE CHEMICAL TYPES

IT= !TYPE { I)
JT =ITYPE { J)

C CONVERT DISTANCE TO A TABLE ENTRY
Ll=CSI (IT,JT)*R2

C IF OUTSIDE TABLE POTENTIAL IS ZERO
IF(LI.GE.LMAX) GO TO 2

C LT IS THE TABLE FOR THIS INTERACTION
LT=LTABLE(IT,JT)

C LOOK UP POTENTIAL AND DERIVATIVE
V=V+EPS(IT,JT)*PTABLE(LI,LT)
FT=EPSF{IT,JT)*FTABLE(LI,LT)

C NOW ADD TO FORCES
DO 4 L:1, NDIM
F=FT*DX (L)
FORCE(I,L)=FORCE{I,L)+F

4 FORCE(J,L)=FORCE{J,L)-F
2 CONTINUE
1 CONTINUE

FORTRAN Code for the pairwise sum of eq. (1).

3

making many simplifying assumptions. Both a supercomputer as
well as better algorithms are necessary to tackle these
problems.

For the purpose of comparing performance on different
computers, I have used the Stillinger-Lemberg(?) model for
water. This model contains central force interactions between
charged oxygen and hydrogen atoms. The three different poten
tial functions between 00, OH and HH, are tailored to give the
correct geometry and dipole moment for an isolated molecule and
some of the pair bonding properties of two molecules

Simulations of charged systems are very important. Common
examples are plasmas, ionic solutions, dipole system and elec
tronic systems. Because all pairs are included in the sum of
eq. (2), the computer time only depends on the number of atoms
and the number of time steps. For this reason my results
should be applicable to all similar systems. I will discuss
here only results for molecular dynamics simulations. The
situation for Monte Carlo is completely parallel, although the
actual coding is different since atoms are moved singly rather
than all together.

Because the atoms are charged, the Ewald image potential
from eq. (2) must be used to account for the long-range Coulomb
potential. In the following benchmarks, I have included all
terms in the sum in eq. (2) for which k < 6n/L; this comprises
123 terms, and is adequate to represent the potential to one
part in 104. As long as the number of terms is held fixed,
the computer time to evaluate eq. (2) will be proportional to
the number of atoms while the pairwise sum in eq. (1) will take
time proportional to the square of the number of atoms. Thus
for large enough systems, it is the pairwise sum which
dominates the calculation. The sines and cosines needed for
Pk are computed recursively. I will not discuss the
computation of the Ewald sum in detail, because it is
relatively specialized.

Computer Comparisons

In this section, I will discuss the programming conside
rations and timing results for the four computers on which
I have tested CLAMPS. In all cases the code was not substan
tially changed. Essentially only the routines which performed
the sums in eqs. (1) and (2) were modified. All changes were
in FORTRAN or with FORTRAN callable routines. The timing
results are not optimal, but rather typical of what could be
achieved by a user in FORTRAN. The timing results are given in
Table II for systems containing 27 and 216 molecules (81 and
648 atoms). MFLOPS refers to the number of million floating
point operations per second in executing the pairwise sum of
Table I assuming each pass through consists of 25 floating
point operations.

4

Table II

Tp is the time in seconds to execute the pairwise sum in
equation (1}; T is the total time in seconds per molecular
dynamic step. MFLOPS is the number of million floating point
operations per second of the code in Table I, assuming that it
contains 25 FLOPS (i.e., MFLOPS = 1.25 x 105 x N(N-1)/Tp)
where N is the total number of atoms, 81 or 648. The asterisk
on CRAY-1 indicates a vectorized version of CLAMPS was used.

81 Atoms 648 Atoms
Computer Tp MFLOPS T Tp MFLOPS T

VAX 11/70 0.35 0.23 1.63 22.2 0.24 32.5

CDC 7600 0.033 2.5 0.125 2.1 2.5 2.85

CRAY-1 0.0182 4.5 0.100 1.1 4.8 1.77

CRAY-1* 0.0070 11.6 0.0157 0.257 20.4 0.311

VAX-FPSAP - - - 25.0 0.21 -

DEC VAX 11/70

The VAX used, is located at NRCC in Berkeley, has a float
ing point accelerator, 2.5 M Bytes of memory, and was running
version 1.3 of the operating system. The code was run in
single precision (32 bits/word) and that was found adequate to
conserve energy and give satisfactory equilibrium properties.
The code used to perform the pairwise sum is essentially that
of Table I.

CDC 7600

The 7600 used is located at Lawrence Berkeley Laboratory,
is approximately ten years old and has 65 K of 60 bit word fast
memory (small core). Because CLAMPS has dynamic memory
allocation, it is possible to fit a simulation in fast memory
of up to about 2000 atoms as long as the potential tables are
not too extensive. The compiler used was the standard CDC FTN
4.8, OPT=2. The only difference between the CDC coding of the
pairwise sum and that in Table I is that the periodic boundary
conditions (loop 3) are handled by Boolean and shift opera
tions instead of branches. Branches on the 7600 causes all
parallel processing to halt.

5

CRAY-1

The CRAY used is located. at Lawrence Livermore Laboratory.
Characteristics of the CRAY are described elsewhere, in this
volume. There is a large advantage in achieving vector rather
then scalar code. This can be seen in Table II. Initially,
the CDC version of CLAMPS was run on the CRAY with the time
results showing it only slightly faster than the 7600. Several
subroutines of CLAMPS were then vectorized and the simulation
executed in approximately 1/5 the time. The vectorized version
of the pairwise sum appears in Table III. The.problems
encountered in vectorizing this routine were:

1) The periodic boundary conditions in loop 3 contain 2
branches. Vectorization was achieved by using the FORTRAN
callable vector merge function.

2) The branch for the case when the squared pair separation is
outside the table will inhibit vectorization. The last
element of the table has been changed to zero and all
occurrence outside the table are truncated to LMAX. The
rest of the code, which is not executed on the VAX or CDC
7600, is executed here. It is often necessary on a vector
machine to increase the total number of floating point
operations to achieve vector rather than scalar
processing. The MFLOP rates reported here are computed on
the basis of the original number of floating point
operations. The extra ones added to achieve vectorization
are not included.

3) The table look-u~s for the force and potential can be done
with the GATHER function. GATHER (N, A, B, INDEX) is
equivalent to the FORTRAN statements.

DO 2 I = 1, N
2 A(I) = B(INDEX(I))

Although GATHER is a scalar operation and rather slow, 12
machine cycles/element, (a machine cycle is 12.5 ns),
GATHER is faster than computing all but the simplest
inverse power potentials. By comparison a square root
takes 14 machine cycles/element and the entire pairwise sum
takes an average of 98 machine cycles/pair. Note that
temporaries are set up for the scaling factors of the
potential, as well as the addresses for the start of the
tables. These temporaries are changed only rarely and so
do not affect the timing. They would be unnecessary if
there were only one type of particle.

6

Table III

C LOOP OVER All PAIRS OF ATOMS I,J
ITL=O
DO 1 l=1,NATOMS-1
11=1+1
NC=NATOMS-I

C CHECK TO SEE IF WE NEED TO REFRESH OUR TEMPORARIES
IF(ITYPE(I).EQ.ITL) GO TO 20
ITL=ITYPE(I)

C GATHER MAKES EPST(J)=EPS(ITYPE(J),ITYPE(I))
CALL GATHER(NC,EPSF (Il),EPS(l,ITL),ITYPE(Il))

C GATHER ALSO EPSF, CSI AND LTABLE
CALL GATHER(NC,EPSFT(Il),EPSF(1,ITL),ITYPE(Il))
CALL GATHER(NC,CSIT(Il),CSI(1,ITL),ITYPE(Il))
CALL GATHER(NC,LTABT(I1),LTABLE(1,ITL),ITYPE(Il))

2 DO 3 J=Il,NATOMS
3 R2(J)=0.
C CALCULATE PERIODIC DISTANCES

DO 4 L=1,NDIM
T=SIGN(ELL(l),X(I,l)
DO 5 J=l1,NATOMS

C CVMGP(X,V,Z)=X If Z.GT.O AND Y OTHERWISE
5 DX(J,L)=CVMGP((X(I,l)-X(J,l))-T,X(I,l)-X(J,L)

+,ABS(X(I,L)-X(J,l))-EL2(L))
DO 4 J=Il, NATOMS

4 R2(J)=R2(J)+DX(J,L)**2
C MAKE R2 INTO TABLE ENTRIES WITH LMAX BEING MAXIMUM

DO 6 J=Il,NATOMS
6 INDEX(J)=LTABT(J)+MINO (LMAX,INT(CSIT(J)*R2(J)))
C GATHER V(R(J))#INTO A VECTOR

CALL GATHER(NC,R2(I1),PTABLE, INDEX(Il)
C SUM THEM UP

VTOTAL=VTOTAL+SDOT(NC,R2(Il),l,EPST(Il),l)
C GATHER DERIVATIVES FROM FTABLE INTO R2

GALL GATHER(NC,R2(Il),FTABLE,INDEX(Il),l)
DO 7 J=Il, NATOMS

7 R2(J)=R2(J)*EPSFT(J)
C MULTIPLY BY DISPLACEMENTS AND ADD INTO FORCE VECTORS

DO 8 L=l, NDIM
FORCE (I,L)=FORCE(I,L)+SOOT(NC,R2(Il),l,DX(Il,L),l)
DO 8 J=Il,NATOMS

8 FORCE(J,L)=FORCE(J,L)-R2(J)*DX(J,L)
1 CONTINUE

FORTRAN code, optimized for the CRAY, which performs the
pairwise sum of eq. (1).

7

4) The summing of the force on particle I can be performed by
the BLAS (8)(Basic Linear Algebra Subroutine) SOOT, which
is quite efficient (about 3.5 machine cycles/element).

attached Floating Point Systems Array Processor

The system used is that located in the Chemistry Department
at Columbia University. The architecture and characteristics
of the Array Processor (120B) are described elsewhere in this
volume. A very careful investigation of the use of an array
processor to perform Monte Carlo simulations has been done by
Chester, et. al.(9) There they demonstrated that with assembly
language hand codTng (APAL) a simulation on the AP would run
about twice as long as an CDC 7600. Here we report the timing
results for the pairwise sum using APTRAN, the FORTRAN Cornell
computer (Level 3.5). Because of the size of CLAMPS (3500
lines), and the intermix between calculations and I/0
operations, the entire code cannot be compiled in the AP.
Instead a single subroutine, which contains the coding in Table
I was written, with all data passed through a common block.
This routine then executes on-the AP with the rest of the
program executing on the host (VAX 11-70). Before each
calculation of the pairwise sum, the coordinates need to be
passed to the AP. After it is finished the potential and
forces are then passed back to the host. The transmittal time
is small (less then 10 ms), so that this mode of operation is
satisfactory if there are at least 100 particles. However, the
code generated by the compiler is not nearly as efficient as
assembly language coding would be, the pairwise sum executes in
roughly the same time as in the VAX alone. Undoubtedly
restructuring of the FORTRAN would improve the execution time.
The accuracy (38 bits) of the AP is sufficient for molecular
dynamics. A general review of array processors and their
usefulness for chemical computations is contained in Ref. (10).

Simulation Needs

Finally I would like to summarize the computational char
acteristics of simulations and what makes a good simulation
computer.

1) A simulation is almost always cpu bound. Hence, fast
floating point speed is essential.

2) Memory size can be made quite small, 20K to 200K.

3) Accuracy demands are less than in many areas of
computational chemistry. Usually one needs accuracy only
to one part in 104 in energy for Monte Carlo and one part
in 106 for the forces in Molecular Dynamics.

8

4) As we have seen on the CRAY the ability to gather data
together is essential. Memory speed must be commensurate
with floating point speed. When nearest neighbor tables
are used fast scatter operations are also needed. The two
essential random memory operations needed are:

B(I) = A(INDEX(I))
B(INDEX(I)) = B(INDEX(I)) + A(I)

5) Except for the above gather-scatter operations, simulations
are easily vectorizable as defined by the CRAY FORTRAN or
the CYBER 200 FORTRAN. Typical vectors have 50 to 500 ele
ments each.

6) The Basic Linear Algebra Subroutines (BLAS) are a conven
ient way of maintaining efficiency and portability. They
should be extended to include such things as GATHER, and
vectorized EXP, SQRT, SIN and COS.

Acknowledgment

This research was suppoited in part by the Office of Basic
Energy of Science of the U. S. Department of Energy under Con
tract No. W-7405-ENG-48 and by the National Science Foundation
under Grant No. CHE 7721305. Special thanks to Dr. M. Rao and
Prof. B. Berne for making available and assisting me in the use
of the computing facilities in the Chemistry Department at
Columbia University.

Literature Cited

1. Lykos, P., Ed. 11 Computer Modeling of Matter 11
; ACS Symposium

Series 86: Washington, D. C., 1978.

2. Ceperley, D.; Alder, B. J.; Phys. Rev. Letts. 1980, 45,
566.3. Metropolis, M.; Rosenblu~ A~ Teller,~. N.;
Teller, E.;~· Chern. Phys. 1953, ~. 1087.

4. Hansen, J. P.; McDonald, I. R.; 11 Theory of Simple L iquidS 11
;

Academic Press: New York, 1976; Chapter 3.

5. Contact the Quantum Chemistry Program Exchange, Department
of Chemistry, Room 204, Indiana University, Bloomington,
Indiana, 47405 for CLAMPS.

6. Valleau, J. P.; Whittington, S. G.; 11 Modern Theoretical
Chemistry 5A 11

; Ed. B. Berne; Plenum: New York, 1977.

7. Rahman, A.; Stillinger, F.; Lemberg, H.;~· Chern. Phys.
1975, 63, 5225.

9

8. The BLAS are a collection of 38 FORTRAN callable
subroutines that peform many of the basic operations of
numerical linear algebra. Contact International
Mathematical and Statistical Libraries, (IMSL) for more
information.

9. Chester, G.; Gann, R.; Gallagher, R.; Grimson, A.;
"Computer Modeling of Matter" Ed. P. Lykos; ACS Symposium
Series 86: Washington, D. C., 1978.

10. Ostlund, N. S.; "Attached Scientific Processors for
Chemical Computations: A report to the Chemistry
Community", NRCC report (1980).

10

